Interaction of prostaglandin D_2 with prostacyclin, carbacyclin and the hydantoin prostaglandin, BW245C, in guinea-pig platelets

S. Hamid & B.J.R. Whittle

Department of Prostaglandin Research, Wellcome Research Laboratories, Langley Court, Beckenham, Kent, BR3 3BS

- 1 The anti-aggregating actions of prostaglandin D_2 (PGD₂) have been compared to prostacyclin (PGI₂), its stable analogue carbacyclin and a hydantoin prostaglandin, BW245C, in guinea-pig platelets in vitro.
- 2 PGI₂, carbacyclin and BW245C were potent inhibitors of ADP-induced aggregation in guinea-pig platelets, with ID_{50} values comparable to those obtained in human platelet-rich-plasma.
- 3 In contrast, PGD₂ acted as a weak and partial inhibitor in guinea-pig platelet aggregation, producing a bell-shaped dose-response relationship.
- 4 PGD₂ induced a dose-related antagonism of the inhibitory actions of BW245C, prostacyclin and carbacyclin on guinea-pig platelets.
- 5 However, PGD₂ did not antagonize the inhibitory actions of either forskolin or dibutyryl cyclic AMP on this platelet preparation.
- 6 The results suggest a non-specific interaction of PGD₂ with these prostanoid binding sites on guinea-pig platelets.

Introduction

Prostaglandin D₂ (PGD₂) is a potent inhibitor of platelet aggregation in human, sheep and horse plasma but is a weak inhibitor in dog, rabbit and rat plasma (Smith et al., 1974; Whittle et al., 1978). PGD₂ has been shown to be generated by human platelets (Oelz et al., 1977) and the non-enzymatic conversion of the endoperoxide, PGH₂ to PGD₂, which can occur in plasma, is greatly enhanced by the presence of plasma protein (Hamberg & Fredholm, 1976; Christ-Hazelhof et al., 1976). Pharmacological and receptor-binding studies suggest that PGE₁ interacts at the same site on human platelets as does prostacyclin and that PGD₂ acts at platelet sites distinct from those of prostacyclin and PGE₁ (Whittle et al., 1978; Siegl et al., 1979; Schafer et al., 1979; Miller & Gorman, 1979).

The hydantoin prostaglandin analogue (BW245C) inhibits human platelet aggregation but differs considerably in structure from either prostacyclin, PGE₁ or PGD₂ (Whittle *et al.*, 1983). However, it has been suggested that BW245C interacts with similar binding sites to PGD₂ on platelets of various species (Whittle *et al.*, 1983; Town *et al.*, 1983). In the present study the

potency and inhibitory characteristics of PGD₂ as an anti-aggregating agent in platelet-rich-plasma (PRP) from guinea-pig has been compared to prostacyclin, its stable analogue carbacyclin (Whittle *et al.*, 1980) and the hydantoin prostaglandin BW245C.

A preliminary account of this work has been presented to the British Pharmacological Society (Hamid & Whittle, 1984).

Methods

Male Halls guinea-pigs (350-450g) were anaesthetized with sodium pentobarbitone (60 mg kg⁻¹, i.p.) and 15 ml of blood was collected from the abdominal aorta, using needle pucture (Braunula size 1), into 5 ml plastic Sarstedt neutral tubes containing trisodium citrate (final concentration 0.315%). The blood was centrifuged (3000 r.p.m. for 2 min) at room temperature in a Petalfuge I bench centrifuge to obtain platelet-rich-plasma (PRP). The PRP was then carefully removed using a plastic syringe, mixed and

transferred to plastic universal 30 ml containers (Sterilin) and was kept at room temperature. The platelet count in the PRP, determined using a Coulter Counter (model ZF), was $2.8-3.5 \times 10^8$ ml⁻¹. All equipment used in the preparation and study of PRP and platelet-poor-plasma (PPP) was plastic or siliconized glass.

Platelet aggregation was measured in a Payton dual channel aggregation module connected to a 'W + W' recorder 1200 as described previously (Whittle et al., 1978). Aliquots (0.5 ml) of PRP were incubated for 1 min at 37°C, stirred with teflon-coated magnetic stirrers at 900 r.p.m., with or without the prostaglandin under investigation, before the addition of submaximal dose of adenosine diphosphate (ADP) to just cause a non-reversible control aggregation. The concentration of ADP used for guinea-pig PRP was $2-4\,\mu\text{M}$.

The inhibition of ADP-induced aggregation was determined by preincubation (1 min at 37°C) with the prostaglandin under investigation before the addition of a sub-maximal dose of ADP. Dose-inhibition curves were constructed for PGI₂, BW245C, carbacy-clin and PGD₂ and the ID₅₀ (dose causing 50% inhibition) was calculated as the dose required to reduce the aggregation to 50% of its control amplitude.

To study the interaction of PGD₂ with the other prostaglandins, doses producing approximately 80–95% inhibition of ADP-induced aggregation were chosen (PGI₂, 4 ng ml⁻¹; BW245C, 6 ng ml⁻¹; carbacyclin, 40 ng ml⁻¹). PRP was pre-incubated (1 min at 37°C) with PGD₂ (100–2000 ng ml⁻¹) before adding the appropriate concentration of the prostaglandin under investigation for a further 1 min incubation at 37°C. The sub-maximal dose of ADP was then added. In further studies, full dose-inhibition curves were constructed for BW245C in the presence of PGD₂ (500, 2000 and 5000 ng ml⁻¹). The interaction of PGD₂ with forskolin (10 μg ml⁻¹) and dibutyryl adenosine 3′5′-cyclic monophosphoric acid (dibutyryl cyclic AMP; 2.9 mg ml⁻¹) was also studied.

To prepare human PRP, approximately 200 ml of human blood was freshly collected following venepuncture in volunteers (who had not taken any nonsteroidal anti-inflammatory agents for 1 week before the study) into a plastic 150 cm² tissue culture flask (Corning) containing trisodium citrate (3.15% w/v solution to give a final citrate concentration of 0.315% w/v). Whole blood was then centrifuged in plastic tubes at 1100 r.p.m. (200 g) in an MSE bench centrifuge for 15-20 min at room temperature. The PRP was then carefully removed using a plastic syringe, mixed and transferred to plastic universal 30 ml containers (Sterilin) and kept at room temperature. Platelet aggregation in human PRP was carried out as described for guinea-pig PRP above.

Drugs

Prostacyclin as the sodium salt was freshly dissolved in 1 M Tris Buffer (pH 9.6 at 4°C) and stored on ice; subsequent dilutions were made with 50 mm Tris buffer (pH 9 at 4°C) immediately before use. Prostaglandin D₂ and carbacyclin, (supplied by the Upjohn Company, Kalamazoo) and the hydantoin prostaglandin, 5-(6-carboxyhexyl)-1-(3-cyclohexyl-3-hydroxypropyl)-hydantoin (BW245C; from the Department of Therapeutic Chemistry, Wellcome Research Laboratories) were stored in ethanol (10 mg ml⁻¹; 4°C) and diluted with 50 mm Tris buffer (pH 7.5 at 4°C) when required. Forskolin (Calbiochem-Behring Corp., La Jolla, Calif.) was stored in ethanol (10 mg ml⁻¹) and diluted when required with 50 mm Tris buffer. Adenosine diphosphate (Sigma Chemical Co.) and dibutyryl adenosine 3'5'-cyclic monophosphoric acid (Sigma Chemical Co.) were dissolved in distilled water when required and kept on ice.

Statistical analysis

Results are expressed as mean \pm standard error of mean (s.e.mean), where n is the number of values. The difference between groups was evaluated using Student's t test for unpaired data. P < 0.05 was taken as significant.

Results

Pre-incubation of prostacyclin (PGI₂), BW245C and carbacyclin with guinea-pig or human PRP caused a dose-dependent inhibition of platelet aggregation induced by ADP (Figure 1). The ID₅₀ for prostacyclin, BW245C and carbacyclin in guinea-pig PRP was

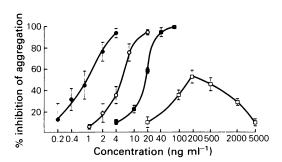


Figure 1 Inhibition of ADP-induced platelet aggregation in guinea-pig platelet-rich-plasma by prostacyclin (\bullet) , BW245C (O), carbacyclin (\bullet) and prostaglandin D_2 (\Box) following 1 min pre-incubation at 37°C. Results show as means, with vertical lines representing s.e.means, from 3-6 experiments.

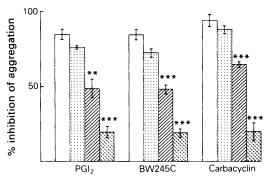


Figure 2 Antagonism of prostanoid-induced inhibition of platelet aggregation in guinea-pig PRP by prostaglandin D_2 (PGD₂). Inhibition of platelet aggregation by prostacyclin (PGI₂, 4 ng ml^{-1} ; n = 6), BW245C (6 ng ml^{-1} ; n = 6) and carbacyclin (40 ng ml^{-1} ; n = 6) was antagonized by pre-incubation (1 min) with PGD₂ ($100 - 2000 \text{ ng ml}^{-1}$) in a dose-related manner. Control, open columns; plus PGD₂: 100 ng ml^{-1} stippled columns; 500 ng ml^{-1} , hatched columns, 2000 ng ml^{-1} , cross-hatched columns. Results, expressed as % inhibition of platelet aggregation compared to the initial controls, are shown as the mean \pm s.e.mean (vertical lines) of n experiments. **P < 0.01; ***< 0.001.

approximately similar to those in human PRP (Table 1). Thus, guinea-pig PRP provides one of the more sensitive animal platelets to the anti-aggregating actions of these prostanoids (see Whittle et al., 1978) and is comparable to human platelets in this respect.

In contrast, PGD₂ gave a bell-shaped dose-response relationship, with a maximum inhibition of aggregation of $53.2 \pm 6\%$ (n = 7) at 200 ng ml^{-1} which was significantly lower at 2000 ng ml⁻¹ (29.2 \pm 3.4% in-5000 ng ml⁻¹ hibition. n = 8; P < 0.01) and $(10.4 \pm 3.5\% \text{ inhibition}, n = 7; P < 0.01)$, as shown in Figure 1. Furthermore, pre-incubation (1 min) with PGD_2 (200-5000 ng ml⁻¹) caused a significant (P < 0.01) dose-related antagonism of the near-maximal anti-aggregating actions of PGI₂ (4 ng ml⁻¹), carbacyclin (40 ng ml⁻¹) and BW245C (6 ng ml⁻¹), as shown in Figure 2. The degree of antagonism with

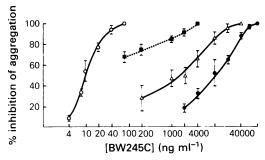


Figure 3 Antagonism of BW245C $(4-80 \text{ ng ml}^{-1})$ induced inhibition of platelet aggregation in guinea-pig PRP by prostaglandin D_2 $(PGD_2; 500-5000 \text{ ng ml}^{-1})$. The control BW245C $(\bigcirc, n=6)$ dose-inhibition curve was shifted to the right in the presence of PGD₂ in a doserelated manner; PGD_2 (500 ng ml^{-1}) $(\bigcirc, n=3)$, 2000 ng ml^{-1} $(\triangle, n=4)$ and 5000 ng ml^{-1} $(\bigcirc, \square=3)$. Results, expressed as % inhibition of platelet aggregation compared to initial controls, are shown as the mean of n experiments with vertical lines representing s.e.means.

PGD₂ (500-2000 ng ml⁻¹) of the actions of PGI₂, carbacyclin and BW245C was comparable (Figure 2).

In further studies, the dose-inhibition curve of BW245C and of carbacyclin was shifted to the right in the presence of PGD₂ (500-5000 ng ml⁻¹) in a doserelated manner. Thus the ID₅₀ of BW245C was significantly increased 350 fold from 7.3 ± 3 ng ml⁻¹ $2.5 \pm 0.6 \,\mu \mathrm{g \, ml^{-1}}$ (P < 0.001),by (2000 ng ml⁻¹) as shown in Figure 3, and that of carbacyclin 1000 fold from $18.6 \pm 0.6 \,\mathrm{ng}\,\mathrm{ml}^{-1}$ to $20.3 \pm 9.8 \,\mu\text{g ml}^{-1}$ (P < 0.05) in the presence of PGD₂ (2000 ng ml⁻¹) (results not illustrated). Since PGD₂ has intrinsic activity as an inhibitor of platelet aggregation, especially at the lower concentrations, the nature of the dose-inhibition relationships was complex. Thus, in the presence of PGD₂, the minimal effective concentrations of the anti-aggregating agents BW245C or carbacyclin, and the shape of their concentration-response curves were dependent on the concurrent concentration of PGD₂ (Figure 3).

Pre-incubation (1 min) with PGD₂ (2000 and

Table 1 Inhibition of ADP-induced platelet aggregation by prostacyclin (PGI₂), BW245C, carbacyclin and prostaglandin D₂ (PGD₂).

	$ID_{50} (ng ml^{-1})$			
	PGI_2	BW245C	Carbacyclin	PGD_2
Human Guinea-pig	$0.5 \pm 0.1(15)$ 0.8 ± 0.2 (6)	$1.4 \pm 0.1(10)$ $7.3 \pm 3.0(14)$	$11.0 \pm 3.0(10)$ 18.6 ± 0.6 (5)	$11.0 \pm 1.6(15)$ * 162.0 ± 30.7 (5)

Results, expressed as concentration of prostanoid causing 50% inhibition of ADP-induced platelet aggregation in human and guinea-pig platelet-rich-plasma (PRP), are mean \pm s.e.mean from (number in parentheses) experiments. *PGD₂ produced a bell-shaped curve in guinea-pig PRP.

5000 ng ml⁻¹) did not cause any antagonism of the near-maximal anti-aggregating actions of forskolin $(10 \,\mu\text{g ml}^{-1})$ and dibutyryl cyclic AMP (2.9 mg ml⁻¹), as shown in Figure 4. Indeed, PGD₂ in these concentrations significantly (P < 0.01) enhanced the antiaggregating actions of both forskolin and dibutyryl cyclic AMP.

Discussion

The response and potency of various prostaglandins in guinea-pig platelets aggregated with ADP has not previously been described in detail. In this study, a technique for the collection of blood from the guineapig abdominal aorta has been utilized for the preparation of platelet-rich-plasma (PRP). The inhibition of ADP-induced aggregation of guinea-pig platelets with prostacyclin, BW245C and carbacyclin had comparable potency to that with human PRP (Table 1). Thus, guinea-pig PRP provides one of the more sensitive animal platelets to the anti-aggregating actions of these prostanoids. In contrast, PGD₂ provided a different profile in the guinea-pig platelets, acting as a weak partial inhibitor and producing a bell-shaped dose-response relationship, whereas in human PRP, PGD₂ acts as a full potent inhibitor of ADP-induced aggregation.

Previous studies have suggested that BW245C can interact with PGD₂ binding sites on platelets from different species (Whittle et al., 1983; Town et al., 1983). However, in guinea-pig PRP, where PGD₂ was found to be only a weak partial inhibitor of platelet aggregation, BW245C acted as a potent full inhibitor of platelet aggregation. Thus, in the guinea-pig platelets BW245C does not simply act as a PGD₂ mimetic, but possibly acts at sites distinct from those of PGD₂, perhaps at the prostacyclin-sensitive site.

Because of the characteristics of the PGD₂ doseresponse curves, further studies with PGD₂ as a potential antagonist of the inhibitory actions of the other prostanoids were conducted. The interpretation of the interactions of PGD₂ is complicated since it does not behave as a typical partial agonist, exhibiting a bell-shaped dose-response curve rather than reaching a plateau inhibitory response at submaximal doses of inhibition. PGD₂ antagonized the inhibitory actions of not only BW245C, but also of prostacyclin and carbacyclin (Figure 2). Furthermore, the rightward shift of the control dose-response curves in the presence of PGD₂ was far greater than one would expect of a competitive antagonist (Figure 3). Thus, PGD₂ appears to act as a non-specific antagonist of the inhibitory actions of various prostanoids in guinea-pig platelets.

The diterpene, forskolin, has been shown to be a potent general activator of adenylate cyclase in mem-

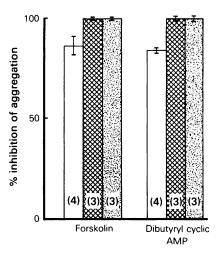


Figure 4 Failure of prostaglandin D_2 (PGD₂; 2-5 μ g ml⁻¹) to antagonize forskolin (10 μ g ml⁻¹) and dibutyryl adenosine 3'5'-cyclic monophosphoric acid (dibutyryl cyclic AMP; 2.9 mg ml⁻¹) induced inhibition of platelet aggregation in guinea-pig PRP. Controls, open columns; plus PGD₂: 2 μ g ml⁻¹, cross-hatched columns; 5 μ g ml⁻¹, stippled columns. Results, expressed as % inhibition of platelet aggregation compared to the initial controls, are shown as the mean of n (number in parentheses) experiments with vertical lines representing s.e.mean.

brane preparations and in intact cells from a variety of tissues, and thus an elevator of cyclic AMP levels (Seamon et al., 1981). Thus, forskolin is a useful agent for the general activation of adenylate cyclase and hence for the investigation of the relationship of cyclic AMP levels to physiological functions in a variety of systems. Platelet aggregation can be inhibited by any agent or process which elevates platelet intracellular cyclic AMP levels (Salzman & Levin, 1971; Haslam, 1975). Elevated cyclic AMP levels appear to regulate platelet cytoplasmic calcium levels by stimulating calcium removal by a membrane system, probably the dense tubular system (Kaser-Glanzmann et al., 1977). Thus forskolin has been shown to be a potent inhibitor of aggregation of human platelets induced by a wide variety of aggregating agents (Siegel et al., 1982). In this study, the platelet inhibitory actions of forskolin, in contrast to those of PGI₂ and carbacyclin, were not antagonized by PGD₂. Since forskolin circumvents receptor interaction and stimulates adenylate cyclase more directly, these findings suggest that PGD₂ does not interact by non-specifically suppressing adenylate cyclase activation. Further, PGD₂ did not antagonize the anti-aggregating actions of dibutyryl cyclic AMP, the stable and more lipophilic analogue of cyclic AMP, which is not metabolized by phosphodiesterases. Thus PGD₂ does not appear to act as a direct antagonist of the actions of intracellular cyclic AMP in these platelets.

The underlying mechanism of the bell-shaped curve and the antagonist actions of PGD₂ in guinea-pig platelets is not clear. One possibility is that there are two types of PGD₂ receptors, one specific for inhibition and the other, at high concentrations, for stimulation of platelet aggregation. Another possibility is that auto-inhibition of the PGD₂ receptor occurs; as the concentration of PGD₂ increases, it antagonizes its own responses.

PGD₂ may also cause a non-specific desensitization and prostanoid receptor down regulation. Blair et al. (1982) have shown carbacyclin to cause a decrease in affinity of the prostacyclin-receptor interaction, as well as a decrease in the total receptor numbers of cultures of NCB-20 cells. Exposure to carbacyclin (1µM) over a 4-16 h period also caused a progressive decrease in the prostaglandin-dependent activation of adenylate cyclase in cell homogenates. However, such desensitization with PGD₂ seems unlikely in the present study since PGD₂ was in contact with the

platelets for only 1 min before the addition of the antiaggregating prostanoids.

At high concentrations PGD₂ may also interact with other stimulatory and pro-aggregatory receptors on guinea-pig platelets, such as those for thromboxane A₂ (Svensson et al., 1975; Armstrong et al., 1983), although PGD₂ did not itself induce aggregation in this species and is a full inhibitor of platelet aggregation in most other species (Whittle et al., 1978; 1983). The complex interactions between the potential pro- and anti-aggregating properties with PGD₂ may thus be unmasked by the use of selective prostanoid-receptor antagonists.

This study shows PGD₂ to be an antagonist of the anti-aggregating actions of several prostanoids but not a non-specific inhibitor of adenylate cyclase or antagonist of cyclic AMP in guinea-pig platelets. It is not yet known whether such antagonistic effects of PGD₂ reflect direct interactions of the binding or receptor sites for the other anti-aggregating prostanoids on the platelets. The development of specific prostanoid receptor antagonists would assist in the interpretation of the current findings.

References

- ARMSTRONG, R.A., JONES, R.L. & WILSON, N.H. (1983). Ligand binding to thromboxane receptors on human platelets: correlation with biological activity. *Br. J. Pharmac.*, 79, 953–964.
- BLAIR, I.A., LEIGH, P.J. & MACDERMOT, J. (1982). Desensitization of prostacyclin receptors in a neuronal hybrid cell line. *Br. J. Pharmac.*, 77, 121-127.
- CHRIST-HAZELHOF, E., NUGTEREN, D.H. & VAN DORP, D.A. (1976). Conversion of prostaglandin endoperoxides by glutathione-s-transferases and seum albumins. *Biochim. biophys. Acta*, **450**, 450–461.
- HAMBERG, M. & FREDHOLM, B.B. (1976). Isomerization of prostaglandin H₂ into prostaglandin D₂ in the presence of serum albumin. *Biochem. biophys. Acta*, 431, 189-193.
- HAMID, S. & WHITTLE, B.J.R. (1984). Prostaglandin D₂ acts as a 'partial antagonist' in guinea-pig platelets. *Br. J. Pharmac.*, 81, 96P.
- HASLAM, R.J. (1975). Roles of cyclic nucleotides in platelet function. In *Ciba Geigy Foundation Symposium*, vol. 35, pp. 121-151. Amsterdam: Elsevier.
- KASER-GLANZMANN, R., JAKABOVA, M., GEORGE, J.N. & LUSCHER, E.F. (1977). Stimulation of calcium uptake in platelet membrane vesicles by adenosine 3', 5'-cyclic monophosphate and protein kinase. *Biochim. biophys. Acta*, 466, 429-440.
- MILLER, O.V. & GORMAN, R.R. (1979). Evidence for distinct prostaglandin I₂ and D₂ receptors in human platelets. J. Pharmac. exp. Ther., 210, 134-140.
- OELZ, O., OELZ, R. & KNAPP, H.P. (1977). Biosynthesis of prostaglandin D_2 . I Formation of prostaglandin D_2 by human platelets. *Prostaglandins*, 13, 225-234.

- SALZMAN, E.W. & LEVIN, L. (1971). Cyclic 3', 5'-Adenosine monophosphate in human blood platelets. *J. clin. Invest.*, **50**, 131–141.
- SCHAFER, A.I., COOPER, B., O'HARA, D. & HANDIN, R.I. (1979). Identification of platelet receptors for prostaglandin I₂ and D₂. J. biol. Chem., 254, 2914-2917.
- SEAMON, K.B., PADGETT, W. & DALY, J.W. (1981). Forskolin: Unique diterpene activator of adenylate cyclase in membranes and in intact cells. *Proc. natn. Acad. Sci.* U.S.A., 78, 3363-3367.
- SIEGL, A.M., DALY, J.W. & SMITH, J.B. (1982). Inhibition of aggregation and stimulation of cyclic AMP generation in intact human platelets by the diterpene forskolin. *Mol. Pharmac.*, 21, 680-687.
- SIEGL, A.M., SMITH, J.B. & SILVER, M.J. (1979). Selective binding site for [³H]-prostacyclin on platelets. *J. clin. Invest.*, 63, 215-220.
- SMITH, J.B., SILVER, M.J., INGERMAN, C.M. & KOCSIS, J.J. (1974). Prostaglandin D₂ inhibits the aggregation of human platelets. *Thrombosis Res.*, 5, 291-299.
- SVENSSON, J., HAMBERG, M. & SAMUELSON, B. (1975). Prostaglandin endoperoxides IX Characterisation of rabbit aorta contracting substance (RCS) from guinea-pig lung and human platelets. Acta physiol. scand., 94, 222-228.
- TOWN, M-H., CASALS-STENZEL, J. & SCHIKINGER, E. (1973). Pharmacological and cardiovascular properties of a hydantoin derivative, BW245C, with high affinity and selectivity for PGD₂ receptors. *Prostaglandins*, 25, 13-28.
- WHITTLE, B.J.R., MONCADA, S., MULLANE, K. & VANE, J.R. (1983). Platelet and cardiovascular activity of the hydan-

toin BW245C, a potent prostaglandin analogue. *Prostaglandins*, **25**, 205-223.

WHITTLE, B.J.R., MONCADA, S. & VANE, J.R. (1978). Comparison of the effects of prostacyclin (PGI₂), prostaglandin E₁ and D₂ on platelet aggregation in different species. *Prostaglandins*, 16, 373-388.

WHITTLE, B.J.R., MONCADA, S., WHITING, F. & VANE, J.R. (1980). Carbacyclin – a potent stable prostacyclin analogue for the inhibition of platelet aggregation. *Prostaglandins*, 19, 605–627.

(Received November 26, 1984. Accepted December 19, 1984.)